Enhanced water splitting through different substituted cobalt-salophen electrocatalysts
نویسندگان
چکیده
منابع مشابه
Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting.
A cost-effective, non-noble metal based high-performance electrocatalyst for the oxygen evolution reaction (OER) is critical to energy conversion and storage processes. Here, we report on a facile and effective in situ strategy for the synthesis of an advanced nanocomposite material that is comprised of cobalt quantum dots (Co QDs, ∼3.2 nm), uniformly dispersed on reduced graphene oxide (rGO) a...
متن کاملOne‐Dimensional Earth‐Abundant Nanomaterials for Water‐Splitting Electrocatalysts
Hydrogen fuel acquisition based on electrochemical or photoelectrochemical water splitting represents one of the most promising means for the fast increase of global energy need, capable of offering a clean and sustainable energy resource with zero carbon footprints in the environment. The key to the success of this goal is the realization of robust earth-abundant materials and cost-effective r...
متن کاملBifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanopar...
متن کاملLight driven water oxidation by a single site cobalt salophen catalyst.
A salophen cobalt(II) complex enables water oxidation at neutral pH in photoactivated sacrificial cycles under visible light, thus confirming the high appeal of earth abundant single site catalysis for artificial photosynthesis.
متن کاملCobalt Hexacyanoferrate on BiVO4 Photoanodes for Robust Water Splitting
The efficient integration of photoactive and catalytic materials is key to promoting photoelectrochemical water splitting as a sustainable energy technology built on solar power. Here, we report highly stable water splitting photoanodes from BiVO4 photoactive cores decorated with CoFe Prussian blue-type electrocatalysts (CoFe-PB). This combination decreases the onset potential of BiVO4 by ∼0.8 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Hydrogen Energy
سال: 2021
ISSN: 0360-3199
DOI: 10.1016/j.ijhydene.2020.09.162